Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 194: 23-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436728

RESUMO

Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Disfunção Ventricular Esquerda , Animais , Camundongos , Diafragma , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Infarto do Miocárdio/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/metabolismo
2.
Exp Physiol ; 107(11): 1312-1325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35938289

RESUMO

NEW FINDINGS: What is the central question of this study? This study addresses whether a high-fat, high-sucrose diet causes cardiac and diaphragm muscle abnormalities in male rats and whether supplementation with the antioxidant N-acetylcysteine reverses diet-induced dysfunction. What is the main finding and its importance? N-Acetylcysteine attenuated the effects of high-fat, high-sucrose diet on markers of cardiac hypertrophy and diastolic dysfunction, but neither high-fat, high-sucrose diet nor N-acetylcysteine affected the diaphragm. These results support the use of N-acetylcysteine to attenuate cardiovascular dysfunction induced by a 'Western' diet. ABSTRACT: Individuals with overweight or obesity display respiratory and cardiovascular dysfunction, and oxidative stress is a causative factor in the general aetiology of obesity and of skeletal and cardiac muscle pathology. Thus, this preclinical study aimed to define diaphragmatic and cardiac morphological and functional alterations in response to an obesogenic diet in rats and the therapeutic potential of an antioxidant supplement, N-acetylcysteine (NAC). Young male Wistar rats consumed ad libitum a 'lean' or high-saturated fat, high-sucrose (HFHS) diet for ∼22 weeks and were randomized to control or NAC (2 mg/ml in the drinking water) for the last 8 weeks of the dietary intervention. We then evaluated diaphragmatic and cardiac morphology and function. Neither HFHS diet nor NAC supplementation affected diaphragm-specific force, peak power or morphology. Right ventricular weight normalized to estimated body surface area, left ventricular fractional shortening and posterior wall maximal shortening velocity were higher in HFHS compared with lean control animals and not restored by NAC. In HFHS rats, the elevated deceleration rate of early transmitral diastolic velocity was prevented by NAC. Our data showed that the HFHS diet did not compromise diaphragmatic muscle morphology or in vitro function, suggesting other possible contributors to breathing abnormalities in obesity (e.g., abnormalities of neuromuscular transmission). However, the HFHS diet resulted in cardiac functional and morphological changes suggestive of hypercontractility and diastolic dysfunction. Supplementation with NAC did not affect diaphragm morphology or function but attenuated some of the cardiac abnormalities in the rats receiving the HFHS diet.


Assuntos
Acetilcisteína , Sacarose , Animais , Masculino , Ratos , Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Dieta Hiperlipídica , Ácidos Graxos , Obesidade , Ratos Wistar , Músculos Respiratórios
3.
J Appl Physiol (1985) ; 132(1): 106-125, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792407

RESUMO

Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.


Assuntos
Insuficiência Cardíaca , Doenças Musculares , Animais , Feminino , Humanos , Peróxido de Hidrogênio , Pós-Menopausa , Qualidade de Vida , Ratos , Ratos Endogâmicos WKY , Volume Sistólico
4.
Antioxidants (Basel) ; 10(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669040

RESUMO

Doxorubicin (DOX) is an anthracycline antibiotic used to treat a wide variety of hematological and solid tumor cancers. While DOX is highly effective at reducing tumor burden, its clinical use is limited by the development of adverse effects to both cardiac and skeletal muscle. The detrimental effects of DOX to muscle tissue are associated with the increased incidence of heart failure, dyspnea, exercise intolerance, and reduced quality of life, which have been reported in both patients actively receiving chemotherapy and cancer survivors. A variety of factors elevate the probability of DOX-related morbidity in patients; however, the role of sex as a biological variable to calculate patient risk remains unclear. Uncertainty regarding sexual dimorphism in the presentation of DOX myotoxicity stems from inadequate study design to address this issue. Currently, the majority of clinical data on DOX myotoxicity come from studies where the ratio of males to females is unbalanced, one sex is omitted, and/or the patient cohort include a broad age range. Furthermore, lack of consensus on standard outcome measures, difficulties in long-term evaluation of patient outcomes, and other confounding factors (i.e., cancer type, drug combinations, adjuvant therapies, etc.) preclude a definitive answer as to whether differences exist in the incidence of DOX myotoxicity between sexes. This review summarizes the current clinical and preclinical literature relevant to sex differences in the incidence and severity of DOX myotoxicity, the proposed mechanisms for DOX sexual dimorphism, and the potential for exercise training to serve as an effective therapeutic countermeasure to preserve muscle strength and function in males and females.

5.
JCI Insight ; 6(1)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290279

RESUMO

Chronic kidney disease (CKD) causes progressive skeletal myopathy involving atrophy, weakness, and fatigue. Mitochondria have been thought to contribute to skeletal myopathy; however, the molecular mechanisms underlying muscle metabolism changes in CKD are unknown. We employed a comprehensive mitochondrial phenotyping platform to elucidate the mechanisms of skeletal muscle mitochondrial impairment in mice with adenine-induced CKD. CKD mice displayed significant reductions in mitochondrial oxidative phosphorylation (OXPHOS), which was strongly correlated with glomerular filtration rate, suggesting a link between kidney function and muscle mitochondrial health. Biochemical assays uncovered that OXPHOS dysfunction was driven by reduced activity of matrix dehydrogenases. Untargeted metabolomics analyses in skeletal muscle revealed a distinct metabolite profile in CKD muscle including accumulation of uremic toxins that strongly associated with the degree of mitochondrial impairment. Additional muscle phenotyping found CKD mice experienced muscle atrophy and increased muscle protein degradation, but only male CKD mice had lower maximal contractile force. CKD mice had morphological changes indicative of destabilization in the neuromuscular junction. This study provides the first comprehensive evaluation of mitochondrial health in murine CKD muscle to our knowledge and uncovers several unknown uremic metabolites that strongly associate with the degree of mitochondrial impairment.


Assuntos
Mitocôndrias Musculares/metabolismo , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Fosforilação Oxidativa , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Uremia/complicações
6.
J Mol Cell Cardiol ; 139: 238-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32035137

RESUMO

Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.


Assuntos
Diafragma/metabolismo , Diafragma/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Proteômica , Volume Sistólico , Actinas/metabolismo , Animais , Masculino , Metionina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Oxirredução , Ratos Sprague-Dawley
7.
J Physiol ; 598(19): 4357-4369, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460123

RESUMO

KEY POINTS: Respiratory muscle function declines with ageing, contributing to breathing complications in the elderly. Here we report greater in vitro respiratory muscle contractile function in old mice receiving supplemental NaNO3 for 14 days compared with age-matched controls. Myofibrillar protein phosphorylation, which enhances contractile function, did not change in our study - a finding inconsistent with the hypothesis that this post-translational modification is a mechanism for dietary nitrate to improve muscle contractile function. Nitrate supplementation did not change the abundance of calcium-handling proteins in the diaphragm of old mice, in contrast with findings from the limb muscles of young mice in previous studies. Our findings suggest that nitrate supplementation enhances myofibrillar protein function without affecting the phosphorylation status of key myofibrillar proteins. ABSTRACT: Inspiratory muscle (diaphragm) function declines with age, contributing to ventilatory dysfunction, impaired airway clearance, and overall decreased quality of life. Diaphragm isotonic and isometric contractile properties are reduced with ageing, including maximal specific force, shortening velocity and peak power. Contractile properties of limb muscle in both humans and rodents can be improved by dietary nitrate supplementation, but effects on the diaphragm and mechanisms behind these improvements remain poorly understood. One potential explanation underlying the nitrate effects on contractile properties is increased phosphorylation of myofibrillar proteins, a downstream outcome of nitrate reduction to nitrite and nitric oxide. We hypothesized that dietary nitrate supplementation would improve diaphragm contractile properties in aged mice. To test our hypothesis, we measured the diaphragm function of old (24 months) mice allocated to 1 mm NaNO3 in drinking water for 14 days (n = 8) or untreated water (n = 6). The maximal rate of isometric force development (∼30%) and peak power (40%) increased with nitrate supplementation (P < 0.05). There were no differences in the phosphorylation status of key myofibrillar proteins and abundance of Ca2+-release proteins in nitrate vs. control animals. In general, our study demonstrates improved diaphragm contractile function with dietary nitrate supplementation and supports the use of this strategy to improve inspiratory function in ageing populations. Additionally, our findings suggest that dietary nitrate improves diaphragm contractile properties independent of changes in abundance of Ca2+-release proteins or phosphorylation of myofibrillar proteins.


Assuntos
Diafragma , Nitratos , Animais , Suplementos Nutricionais , Camundongos , Contração Muscular , Qualidade de Vida
8.
Exp Gerontol ; 103: 69-79, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29289553

RESUMO

AIM: Inspiratory muscle (diaphragm) function declines with age, contributing to exercise intolerance and impaired airway clearance. Studies of diaphragm dysfunction in rodents have focused on moderate aging (~24months); thus, the impact of advanced age on the diaphragm and potential mechanisms of dysfunction are less clear. Therefore, we aimed to define the effects of advanced age on the mechanics, morphology, and global and redox proteome of the diaphragm. METHODS: We studied diaphragm from young (6months) and very old male mice (30months). Diaphragm function was evaluated using isolated muscle bundles. Proteome analyses followed LC-MS/MS processing of diaphragm muscle. RESULTS: Advanced aging decreased diaphragm peak power by ~35% and maximal isometric specific force by ~15%, and prolonged time to peak twitch tension by ~30% (P<0.05). These changes in contractile properties were accompanied, and might be caused by, decreases in abundance of calsequestrin, sarcoplasmic reticulum Ca2+-ATPase, sarcalumenin, and parvalbumin that were revealed by our label-free proteomics data. Advanced aging also increased passive stiffness (P<0.05), which might be a consequence of an upregulation of cytoskeletal and extracellular matrix proteins identified by proteomics. Analyses of cysteine redox state indicated that the main diaphragm abnormalities with advanced aging are in metabolic enzymes and mitochondrial proteins. CONCLUSION: Our novel findings are that the most pronounced impact of advanced aging on the diaphragm is loss of peak power and disrupted cysteine redox homeostasis in metabolic enzymes and mitochondrial proteins.


Assuntos
Envelhecimento/fisiologia , Diafragma/fisiopatologia , Mitocôndrias/metabolismo , Proteoma/metabolismo , Animais , Cisteína/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Oxirredução , Condicionamento Físico Animal , Proteômica
9.
Heart Fail Rev ; 22(2): 191-207, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27000754

RESUMO

Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.


Assuntos
Envelhecimento , Diafragma/fisiopatologia , Terapia por Exercício/métodos , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Insuficiência Cardíaca , Animais , Dispneia/etiologia , Dispneia/fisiopatologia , Dispneia/reabilitação , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/reabilitação , Humanos
10.
J Acad Nutr Diet ; 116(1): 38-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26376961

RESUMO

BACKGROUND: Current literature provides conflicting data regarding seasonal variability in dietary intake. OBJECTIVE: Our aim was to examine seasonal variation in dietary intake in healthy adults from the metropolitan Washington, DC, area. DESIGN: This study utilized an observational cohort design. PARTICIPANTS/SETTING: Male and female healthy volunteers (n=103) between the ages of 18 and 75 years were recruited from the metropolitan Washington, DC, area to participate in a clinical study at the National Institutes of Health Clinical Center from February 2011 to June 2014. MAIN OUTCOME MEASURES: Three- to seven-day food records were collected from subjects (n=76) at three time points (12 to 15 weeks apart). Subjects were excluded from analysis (n=27) if they completed less than three time points. Food records were reviewed by nutrition staff, assigned to a season, and coded in Nutrient Data System for Research for energy, macronutrient, micronutrient, and food-group serving analysis. STATISTICAL ANALYSES: Multivariate general linear models were run on energy, macronutrient, micronutrient, and food-group intakes, while being adjusted for age, sex, race, and body mass index (calculated as kg/m(2)). RESULTS: Subjects had a mean±standard deviation body mass index of 25±3.9 and age of 34±12.4 years. Subject demographics were 71.1% white, 9.2% black/African American, 13.2% Asian, and 6.6% unknown race, with 44.7% males and 55.3% females. Mean intake of energy across seasons was 2,214.6±623.4 kcal with 17.3%±4.1%, 33.6%±5.5%, 46.6%±8.0%, and 2.7%±3.2% of calories from protein, fat, carbohydrate, and alcohol, respectively. Intakes of energy, macronutrients, micronutrients, and food groups did not differ between seasons. CONCLUSIONS: People living in the metropolitan Washington, DC, area did not exhibit seasonal variation in dietary intake. Therefore, when designing studies of nutrient intake in a metropolitan population, these findings suggest that investigators do not need to consider the season during which diet is examined.


Assuntos
Dieta , Estações do Ano , População Urbana , Adulto , Idoso , Bebidas Alcoólicas , Índice de Massa Corporal , Estudos de Coortes , Dieta/estatística & dados numéricos , Registros de Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , District of Columbia , Ingestão de Energia , Etnicidade , Comportamento Alimentar , Feminino , Humanos , Masculino , Micronutrientes/administração & dosagem , Pessoa de Meia-Idade , National Institutes of Health (U.S.) , Projetos Piloto , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...